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Abstract

Compton scattering in dense electron gases is

reviewed. The processes of Compton scattering along with

a scattering inhibition factor are incorporated into the

development of an analytical expression for the scattering

kernel. This kernel is then used to compute angle averaged

Compton cross sections for electron gases of various tempera-

tures and number densities.
x.
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I. Introduction

Background

This report approaches the treatment of Compton

scattering when the electrons are described by a degenerate

distribution. In such a distribution, the electrons are

at a low enough temperature and/or at a sufficiently high

density so that the number of final energy states available

to the scattered electrons is limited. There are a number

of physical systems where the degeneracy effect is impor-

tant. Electron gases present in laser fusion reactors,

fusion weapons, and white dwarf stars are degenerate

(4:225). The development of Compton cross sections, which

could be computed quickly, for such system.3 would be of

great use. Radiation transport computer codes that use

either the Pn or Sn method require knowledge of angle

averaged Compton cross sections.

Present methods of determining Compton cross sec-

tions involve interpolation from data tables acquired

through numerical computations or from methods such as the

Fokker-Planck approximation (5:1). The drawback to the

Fokker-Planck method is that it breaks down in the rela-

tivistic regime. Although recent work indicates that an

extension to relativistic distributions may be possible (8).

o--.



.~ Current research by Dr. George Nickel of Los Alamos

National Laboratory has yielded an analytic formalism for

the Compton scattering kernel which describes the scattered

photon distribution. The intent of this research is to

extend Dr. Nickel's work to Compton scattering in degener-

ate electron gases, and to compute differential Compton

cross sections.

Goals and Discussion

The goal of this project was to develop an ana-

lytical form of the chemical potential, incorporate it into

an electron vacancy factor, and finally develop a computer

code that would compute the cumulative scattering proba-

bility for degenerate gases. Time permitted the goal to be

extended to the computation of angle averaged Compton cross

sections. The main thrust of this research is aimed at ~1

developing accurate Compton cross sections which could be

computed quickly. Therefore, it was necessary to develop

as many approximations and analytic solutions as possible.

These analytic expressions will eliminate lengthy numerical

computations. This will hopefully decrease run times in

computer codes where the Compton cross sections are used.j

In addition, variable transformations were used throughout

the development to simplify integration. These transforma-

tions greatly simplified the surface of integration. The

validation of this work is essential. Presently, no work

2 4
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in the area of angle averaged Compton cross sections for

degenerate systems exists and the results listed in this

paper stand alone. To ensure that the computer code which

generated the results was working correctly, the electron

gas was treated as nondegenerate and the results compared

to existing data (5:12-13). The presence of this develop-

ment should be a 'tool' of considerable value to the radia-

tion transport community. The computer code "CSP" could

easily be adapted into existing codes.

Scope

This analysis is concerned with developing angle

averaged Compton cross sections for degenerate electron

gases and validation of the code. A particular area of

application was never specifically addressed, rather it

was intended that the development be generalized and its

asage left to others.i:a

3
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II. The Electron Distribution

Fermi Distributions

The understanding and subsequent development of

various parameters associated with a Fermi gas was critical

in this research. The Fermi gas is described through the

use of statistical mechanics. A Fermi gas receives its

name because the gas consists of fermions. Fermions are a

class of particles which have half integer spin and include

such particles as neutrons, protons, and electrons. In

this study only the electrons are examined. An area of par-

ticular interest is the distribution of fermions in the gas.

Fermions are treated as being identical and indis-

tinguishable particles. Because of this, any fermion has

an equal probability of being in any energy state. Also,

fermions obey the Pauli exclusion principle which states

there can only be zero or one fermion in any single par-

ticle state given by a set of quantum numbers. An equation

which addresses the probability of a state being occupied

can be derived by using the partition function for a grand

canonical distribution, applying the above constraint, and

summing over the energy states (3:197-199). The distribu-

tion function for single particle energy states is given by,

44 ,., 1
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where

= kinetic energy of the Fermion

k =Boltzmann's constant

T= equilibrium temperature of the Fermi gas
,A chemical potential

The chemical potential is also referred to as the Fermi

energy,4 , in the limit as T-O. The chemical potential can

be thought of as a mass transfer parameter and will be dis-

cussed in more detail later in this paper. At absolute

zero if E>u n(e) goes to zero while if C< the term in the

exponential goes to zero and n(e)-l. When most of the

energy levels 4< u have an occupation of 1 and most of the

energy levels e>p are unoccupied, the Fermi gas is said to

be degenerate. Figure 1 shows n(e) versus energy when the

temperature is equal to zero.

Fig. 1. Occupation of States at T=O

5
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r.

If T*O then the number of energy states available spreads

out over a wider range and maximizes the total energy con-

tent of the system. Figure 2 shows n(e) versus energy at

temperatures much greater than zero.

Lo

0.5

0 1

Fig. 2. Occupation of States at T>>O

Figure 3 shows the occupation of energy states as a func-

tion of temperature and speed. As will be shown later in

this paper, the chemical potential is also a function of

electron number density and temperature and takes on large

negative values as the temperature is increased. Therefore,

the exponential term in n(e) goes to infinity and n(e) goes

to zero in the high temperature regime' Equipped with the

knowledge of the occupation of energy states, the next step

is to determine the Fermi distribution function.

In order to obtain the distribution of fermions in

a gas, the number of available states in the system is

multiplied by the probability of the energy state being

occupied. The number of energy states available in a

Fermi gas can be described by the quantum mechanical

6

- 4 * S. * ~ I . '1. '.°4



061 :P

-&q

Fi.30rbblt f lcrnEeg tt

Ocuainv.Vlct0n eprtr

I-7



* .results for a particle in a box. The number of states

available D (p) is,

where

g = the spin degeneracy g=2s+l (s=1/2 for Fermions)

h = Planck's constant

p = momentum

The distribution of Fermions is now

In order to understand the Fermi distribution, the behavior

in the degenerate and nondegenerate limit is studied.

First, the effects of the variation of the chemical

potential on the electron distribution are examined. In

the case when the chemical potential is negative (non-

degenerate limit), f(p) reverts back to a Maxwellian dis-

tribution. In the other limit, when the chemical potential

is positive and greater than most of the kinetic energies,

the gas becomes degenerate. In a degenerate gas, the acces-

sibility to higher energy states is extremely limited.

This behavior is examined in a Fermi gas as it is brought

to low temperatures (T-*O) or to high particle densities.

8



A parameter that arises from the derivation of the average

energy of a Fermi gas (1:439) and is helpful in determining

degeneracy is the ratio

VII

where NZ,67n is the thermal DeBroglie wavelength and

is the atomic separation distance. If the wavelength

is greater than the separation distance of the particles,

the wave nature is expected to be apparent. Therefore,

when Ris greater than or equal to one, the electron gas is

degenerate.

Since, the treatment of a relativistic distribution

arises in this study a relativistic form of f(p) in terms

of velocity was derived (Appendix E).

Figures 4 and 5 show plots of this distribution F(v/vo)

versus v/vo where vo is the most probable velocity associ-

ated with the distribution. A number density of 1025

electrons per cubic centimeter was chosen for all cases.

It can be seen that the electron distribution shifts as boo

the temperature decreases and finally exhibits the behavior

of a step function characteristic of a degenerate fermi

, gas. When the degeneracy is nonexistent equation 5 reverts

.5o
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to the relativistic Maxwellian. As a comparison, the

plots for relativistic Maxwellians were placed adjacent

to the plots of the fermi distributions. The fermi dis-

tribution was in close agreement with the relativistic

Maxwellian in the nondegenerate limit. The relativistic

Maxwellian distribution is given by

where

Kz. 2 second order Bessel function of the

second kind

and can be found in reference (9). Next, an analytical

form of the chemical potential is derived.

Chemical Potential

As has been shown, the chemical potential is a

parameter that largely influences the behavior of the

electron gas. The ability to easily compute the chemical

potential presents a problem. The chemical potential can

be found numerically by solving the equation,

which states that the total number of particles is equal

to the distribution of fermions integrated over all

12
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momentum. This is both tedious and impractical for usage

in computer codes where quick computations are a necessity.

Instead, the limits in which p is positive and negative

have been examined and an analytical representation devel-

oped for each regime. When the gas is degenerative (,u>O),

the chemical potential (Appendix B) is given by

]- (r4

where e is the Fermi energy and is the value of the chemi-

cal potential at T=0. Also, the Fermi temperature is

defined by the equation

In the other limit the chemical potential is

To_

Development of equations 8 and 10 is contained in Appen-

dix C. In order to determine the accuracy of equations 8

and 10, numerical solutions were computed using equation 7.

Accurate values of the numerically computed p were obtained

by doing a variable transformation and selecting a variable

grid spacing for integration. Table 1 shows numerical and

analytical results are in close agreement as the temperature

13
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is varied. Table 2 shows the same comparison yet with

various number densities and temperature extremes. In

table 2, the high temperature regults do not agree as

closely as do the low temperature results. At high tempera-

tures the distribution becomes relativistic and equation 10

breaks down. Any discrepancies that do arise lead to only

minute effects on the distribution. Also, as the chemical

potential approaches zero the analytical results start to

diverge away from the numerical results. This appears to

be an additional area in which the analytical representa-

tion breaks down. The parameter space of interest that this

report addresses leads to values for the chemical potential

which do not lie in this region.

A plot of 114 versus TC is presented in figure 6

showing, as had been earlier stated, that as the temperature

gets large relative to the Fermi temperature the chemical

potential goes negative. The break in the curve at p equal

zero arises because of assumptions made in the development

of the chemical potential. To further grasp the behavior

of the chemical potential, a three-dimensional plot has

been constructed. Figure 7 presents the sensitivity of

the chemical potential to increases in temperature and

number density. As temperature is increased and the number

density held constant, the chemical potential goes to larger

and larger negative values. But when the temperature is

15
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large and the number density increased, the chemical

potential increases. At the low temperatures, the chemi-

cal potential slightly varies with increasing number

density.
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III. Scattering Kernel

The Compton cross section can be decomposed into

three parts.

where

N~s the number of scattering centers per unit volume

)As5= collision cross section per unit scatter

k W 4 =the scattering kernel

The kernel is the portion of the cross section which

describes the probability a photon of energy h%) will

scatter to some final energy Vv'. It is the dominate term

in the cross section. The scattering kernel integrated

over all possible scattered photon energies and angles is

equal one. Therefore, a cumulative distribution function

was chosen to represent the kernel.

The methodology used to develop the Compton scatter-

ing kernel for a degenerate electron gas parallels Nickel's

recent work (5), but changes have been incorporated which

eliminate some previous difficulties. Compton scattering

is defined in terms of an incident photon scattering from

an electron at rest (see figure 8).

20



IIf

Fig. 8. Compton Scattering Geometry
in the Electron Rest Frame

The Compton scattering formula,

•j ±

exhibits the characteristic that photons cannot gain energy

upon scattering. But if scattering occurs between a photon

and moving electron, the electron can impart some or all of

its energy to the photon and increase the photon's energy.

This is defined as inverse Compton scattering. The scatter-

ing kernel developed is for the case of photon scattering

from a degenerate gas of free electrons.

This development begins in the laboratory frame

where, the incident photon makes an angle 9 with the inci-
dent electron (see figure 9). A transformation is made to

the electron rest frame and Compton scattering is applied.

The angles 0 and 7 represent a polar and azimuthal change

of the scattered photon. The quantities a' and a are the

21
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Fig. 9. Initial Scattering Geometry
in the Laboratory Frame

incident and scattered photon energies in the rest frame

in units of electron rest mass energy (see figure 10).

Fig. 10. Scattering Geometry in
the Electron Rest Frame

Next, by transforming back to the lab frame one has,

where a, is now the scattered photon energy in the lab

frame. The development of equation 13 is contained in

22
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" -. Appendix D. Equation 13 represents a surface in

space and is used to determine the limits of the cumulative

distribution function. The cumulative distribution function

is defined as the product of the three angular distribution

functions.

F (fi ; f(7rar f;ro')afve Aw

F(a s,13) is the probability a photon of energy a will

scatter to % by interacting with an electron of speed .

Introducing the variables " where

-CAI-(OS)
lipl

further simplifies equation 13, resulting in:

* 0y Co~sa Y 1-- 0-' (M)

Note, that this transformation further reduces the number

of independent variables from seven to five. The angular

distribution functions over ,9 were selected to be

23
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Equation 19 assumes the polarization of the photon is

unimportant. Equation 20 is the Klein-Nishina formula in
r

the electron rest frame. A dependence arises in the

normalization factor 'A' because of the a' term. The inci-

dent photon energy in the rest frame,a', can be defined in

terms of the incident photon a in the lab frame by the

equation

Thus, theW dependence is seen. Lastly, equation 21 implies

that the angle between the incident photon and electron is

distributed isotropically. Next, let

and 'A' can be easily computed.

,q ,~.j =l .- alI-o' r*( I-2,',,,,"r. ' r ('t

°. [* oi'r 2

"" "!llii~mllllllllll...................................,-"



The integrals over Cerlr are weighted by the respective

probabilities and can be regarded as the integral over a

sphere of radius 'r', polar angle 'I', and azimuthal angle

'T' (see figure 11).

460H

-I

Fig. 11. Scattering Sphere over (, , Space

The integration is still difficult. Although the distribu-

tion function is now independent of T, the boundary surface

is not. A variable transform to angles ({ and T' is made

and the coordinate system is rotated by angle 6 about the

axis and 0 (see figures 12 and 13).

'IS AT x is

IF-

Fig. 12. Geometry Prior to Rotation

25
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Fig. 13. Geometry After Rotation

The terms for cost~? and sin '? sin -r are substituted by

making use of the identity (5:6)

cosf ~sw~cz~;- ~CZ5)

sn Yf Co@s *If%&

where sin 6 and cos 6 are chosen as

Equation 18 reduces to

-o5 = ,,'c (1- 'r .zq

The surface is simplified but the distribution function

F(mwo :.) is complicated. Fortunately, some of the

26
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integrals conta2- odd functions integrated over even inter-

vals and are eliminated. The transformations known as

'shearing transformations' used to obtain equation 29 greatly

simplify integration. Figure 14 shows the surface in

space prior to and after the shearing transformation. Next,

the value of 'r' at the intersection of the surface at '= 0

or 7" is defined as 'rmin'. Rmin is found by solving equa-

tion 13 for its minimum value.

*..= - - .- 4.]3&

(. In addition, the photons can scatter over the range speci-

fied by solving the quadratic in equation 13 for a s .

a 4,and are given by

2 Vt

The limits on cos and cos when z<0 are

cos

Cos m r ~c )(~3 4
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Fig. 14. integration Geometry Prior To and After the
Shearing Transformation (reprinted with per-
mission of G. Nickel; Graphs by Douglas Weiss)
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and when z_>O.

Cos

Cos (3r Ta(3d)v C

The final form of the cumulative distribution function can

now be written. When z<0 the cumulative distribution

function is,

'rr r-

Fj (7A i.-j-

+ X o'r3 t/(Iil-?j (3-7)

and for z>0

4 f 'Ar cbs 0 -- ta')r t-

f "

An approximation can be made to further simplify the

integral. For electrons and photons with kilovolt energies,
S-2 -1 -2.

ThO f kin orm o and 'a' on the order of 10 Thus

an 'a' can be ignored as a lowest order approximation to

29
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equations 37 and 38. Since the a/ term arises only in the

Klein-Nishina formula, a numerical integration was done to

determine the normalization constant when a/ was small.

The results were compared to analytical results obtained

by ignoring a/, and were in close agreement. Thus, this

approximation to the scattering kernel is fairly good.

The cumulative scattering probability becomes

f f

Further approximations yield

no.

where

?r ,L rv-/ Cr(:

and

The cumulative scattering probability is multiplied by an

electron vacancy factor - and, where ;._ is the

final electron energy associated with a scattering event.

This diminishes the probability of a scattering event

occurring if the final electron state is occupied.
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IV. Results

* The cumulative scattering probability can be corn-

puted through the use of equations 37 and 38. A computer

code was written to run on the CDC Cyber which would corn-

pute the cumulative scattering probability averaged over

the velocities of an electron distribution. In addition,

an electron vacancy factor was included to account for final

electron energy state occupation when the gas is degenerate.

The results for the cumulative scattering probability were

then used to find the differential Compton cross section.

Me thodo logy

In order to compute the cumulative scattering proba- L
bility, a computer code, 'EDIST', was used to compute the

one hundred equally probable velocities for an electron

distribution. An incident photon energy was chosen and

another program 'CSP' used the energy data from 'EDIST' to

find the average cumulative scattering probability. In

* 'CSP', the scattered photon energy bins were first initial-

ized. Then for each electron velocity, the probability of

scattering into each energy bin was computed. The proba-

bility of scattering into a certain energy bin was multi-

plied by the electron vacancy factor l-n(e). Just prior to

computing the cumulative scattering probability, the final

31



electron energy necessary for a photon to scatter into a

particular bin was calculated. This energy of the electron

was used to compute n (e). -The two programs were run for

cases of varying number densities, incident photon energies,

and electron temperatures.

Discussion of Results

Figures 15 and 16 show the behavior of the cumula-

tive scattering probability (equations 37 and 38) for the

nondegenerate and degenerate cases. The scattered photon

energy versus the probability of scattering into that

energy bin is plotted for incident photon energies of 2 and

20 KeV. It can be seen that for a particular incident

1~ photon energy, the cumulative scattering probability curves

shift toward higher scattered photon energies as the elec-

tron temperature is raised. This is due mainly to Doppler

shifting between the electron rest frame and the lab frame.

* The scattered energy states accessible to the incident

photon are contained in the region of the cumulative scatter-

ing probability curves where the slope is varying. In the

* degenerate limit, the cumulative scattering probability

curves are influenced by the final energy state occupation

of the electron. The curves show a decrease in the scatter-

ing probability at the higher scattered photon energies.

The magnitude of this shift is a function of the electron

temperature. At the higher temperatures, the degeneracy
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. .is not as pronounced as at the low temperatures. The

Compton scattering kernel can now be used to calculate

Compton cross sections. "

The differential Compton cross section j(o, is

computed by evaluating

d~rAh 0j 43)
C4'.3

where vK&A. is the Klein-Nishina cross section for small a.,

and is the cumulative scattering probability dif-

ferentiated with respect to the scattered photon energy.

Since 'F' is a function of 'rmin' and 'rmin' in turn a

function of a&, explicit representation of the differentia-

tion was tedious but not impossible. Computer runs using

an averaging approach similar to that used in 'CSP' were

used to compute *-- Initial results obtained proved to

be inconclusive since they showed that downscatter was

dominant in the Compton cross section profiles even at low

incident photon energies. At low incident photon energies,

the electron can be treated as being infinitely massive and

the scattered photon energy is slightly shifted to lower and

higher energies. This can easily be shown by evaluating the

normal electron rest frame formula for Compton scattering.

35
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Another approach was taken to compute the differential

Compton cross section.

Since curves of the cumulative scattering proba-

bility versus scattered photon energy can be computed,

can be evaluated by finding the slope at various
0"t

points on the cumulative scattering probability curves.

Differential Compton cross sections were computed for

electron temperatures of 1 KeV and 20 KeV, number of densi-
tie o 1 27  1 31  1 33  35-"

ties of 10, 10, and 10 electrons per cubic meter.

Also, incident photon energies of 5, 10, 20, 40, and 60

KeV were chosen. Figures 17 and 18 show the differential

cross section in millibarns per KeV versus the final

scattered photon energy. The solid lines are the cross

sections in the nondegenerate limit. These 'tents' show

the same general behavior as results found in references

(6:188) and (9:16-18).

The cross sections exhibit three distinct charac-

teristics: Compton shift, Doppler shift, and upscatter of

the photon in the lab frame. A photon will, upon scatter-

ing, have its frequency decreased due to the usual Compton

shift associated with scattering of electrons at rest.

This effect on the cross sections is more noticeable when

the incident photon energy becomes a significant fraction

of the electron rest energy. Secondly, there is broadening

of the cross sections due to the Doppler effect of scatter-
4w

ing from a distribution of moving electrons. Finally, the
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p

energy of the scattered photon will increase due to the

relativistic effect that the photon will appear more intense

to an electron moving toward it than away from it. This is

the reason that upscatter component of the Compton cross

section is seen in the lab frame even though no upscatter

occurs in the rest frame. As Pomraning (9:184) points out,

this blue shift is needed to balance the Compton red shift.

If a radiation field at a certain temperature
scatters from an electron gas at the same temperature,
the scattered photons should have the same distribution
as the incident photons [9:1841.

The Compton cross sections decrease with increasing

photon energy because the units are in millibarns per KeV.

Thus, the cross sections fall off as one over the energy of

the scattered photon. At low incident photon energies, the

(. profile of the Compton cross sections have some character-

istic width controlled by Doppler broadening. When the

energy of the photon is increased, the profile of the

Compton cross sections is driven by the Compton scattering

formula which represents a square step function in the

electron rest frame. This square step function is broad-

ened at the higher incident photon energies and competes

with and begins to dominate the Doppler effect in influ-

encing the shape of the cross sections. Also, figure 18

shows that Doppler broadening of the Compton cross sections

becomes more significant as the electron temperature is

increased. The expression for OR goes approximately

- 39



as l/p, so the Compton cross section for a particular inci-

dent photon energy decreases as the electron temperature

is raised.

The dashed lines show the differential cross sec-

tions when the photons interact with a degenerate electron

gas. The behavior is consistent with theory. The number

of final energy states is limited as the gas becomes

degenerate. The instances where the electron delivers most

or all of its energy are decreased since the lower final

energy states required for such an event are filled. If a

Compton scattering event does occur, the photon will most

likely downscatter to lower energies. Thus, a slight

shift to lower photon energies is seen in the 'tents'.

This behavior is more noticeable at higher incident photon

- . energies. Also, the peaks of the 'tents' decrease because

- the cumulative scattering probability decreases in a

"* degenerate electron gas. The general behavior of these

degenerate differential Compton cross sections coincides

with nondegenerate case outlined above.

A deeper appreciation of this development can be

given by noting the reduction of the computational time

required to evaluate the Compton cross sections. Dr. Nickel

numerically evaluated equations 37 and 38 with an electron

vacancy factor for the case in figure 17. His results,

while agreeing with those in figure 17, took approximately

an hour of CRAY time to compute. The results obtained in

40



this report required only 2.65 cpu seconds on the CDC

Cyber.]

Higher incident photon energies were not examined

because the approximation to the scattering kernel breaks

down as the photon energy approaches the electron rest

energy. Earlier work by Nickel (7) shows that as the ratio

cbecomes large, the kernel becomes double valued. The

breakdown in the approximation of the kernel might be allevi-

ated by higher order approximations to equations 37 and 38.

Further research is needed.

41
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V. Recommendations

Several areas of this investigation were not fully

examined but deserve further analysis. A few topics of

continued research are listed below.

1. Scattering Kernel. Although the results

obtained in figures 15-18 lead to good results for the

Compton cross sections, it is necessary to compare these

analytical results to exact ones. Therefore, numerical

integration of equations 37 and 38 is needed as a yard-

stick to measure the accuracy of the analytical results.

OR Also, it would be interesting to determine if higher order

approximations to equations 37 and 38 lead to a better

correlation with the exact results.

2. Compton Cross Sections. As mentioned in the

results section, some difficulty was encountered in the

explicit evaluation of the differentiated scattering kernel.

It is hoped that continued work will present a clean solu-

tion to this problem.

3. Computer Implementation. An analysis should

be done to find if a marked difference exists between exist-

ing codes which use the lengthy methods of determining

cross sections and an updated code that used the modified

42
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: ~Nickel formalism. It is hoped that use of this development

for Compton cross sections will drastically reduce run

times and in turn save money.

44
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VI. Conclusions

The answers obtained for Compton cross sections in

the nondegenerate limit for electron and photon energies

in the kilovolt regime corresponded to cross sections that

exist in current literature. This showed that the computer

code was running correctly and that the lowest order approxi-

mation to the Compton scattering kernel was a good one.

The extension to the degenerate limit yielded Compton cross

sections that were lower in magnitude and shadowed by the

nondegenerate results. The degenerate results reflected

the fact that lower energy states of the electron distribu-

tion were filled. Therefore, scattering to these final

energy states was inhibited. The most outstanding fact of

this development of angle-averaged Compton cross sections

is the small amount of computer time required to obtain

results. There was a decrease by three orders of magnitude "

in run times by using an approximation to the kernel. If

further investigations of this method can be extended to

photon and electron temperatures in the hundreds of KeVs

and implemented into weapons or fusion computer codes, then

a very significant impact on computer run times may be seen.
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A. 'CSP' Listing

The program 'CSP' is used to compute the cumulative

scattering probability given an initial photon energy and

velocities of an electron distribution. A listing of the

code and the variables is contained on the following pages.

45I.
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* .-. PROGRAM CSP

*THIS PROGRAM COMPUTES SCATTERING PROB.. WITH THE
*'NEW' RMIN FOR A DEGENERATE DISTRIBUTION

INTEGER L,Q,NOD(350) ,TOTAL
LOGICAL FLAG (350)
REAL AA,BB,CC,DD,EE,FF,GG,RPTOT(350,150)
REAL ALPHMI,ALPHMA,VI (300) ,NE
REAL M,C,K,H,VOL,PI,AL(350),T,N
REAL ALPHI,F,ALPHS,BETA,B1,LA,PROB(350)
REAL VMAX,VMIN,DIFFER,LAPR
PARAMETER(M=9. 1E-31,C=3E8,K=1. 38E-23)
PARAMETER (H=6.63E-34,VOL-1. ,PI=3. 14159)

* THE INCIDENT PHOTON ENERGY IS ENTERED

PRINT*, 'ENTER THE INCIDENT PHOTON ENERGY'
READ* ,ALPHI
ALPHI=ALPHI/511.

* THE GRID OF SCATTERED ENERGY, ALONG WITH A FLAG
* AND COUNTER ARE INITIALIZED

DO Li R=1,6,.0195
AL(I)=REAL(R) /511.
NOD(I)1l
FLAG (I) =. TRUE.
TOT (I,1) =0

11 CONTINUE

* ENTER THE VELOCITY DATA POINTS

PRINT*,IENTER THE TOTAL #OF VELOCITY DATA POINTS'
READ* ,TOTAL

* READ THE FILE "VEL" CONTAINING THE VELOCITY DATA
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OPEN(3,FILE='VEL')
REWIND 3
DO 88 I=2,TOTAL+I

READ(3,FMT=89)VI (I)
88 CONTINUE
89 FORMAT (E 11. 3)

CLOSE (3)

* ENTER THE NUMBER DENSITY OF THE SYSTEM
,

PRINT*,'ENTER THE NUMBER DENSITY OF THE SYSTEM'
READ* ,N

• ENTER THE TEMPERATURE OF THE ELECTRONS

PRINT*,I'ENTER THE TEMPERATURE OF THE SYSTEM'
READ* ,T
T=T/8. 61E-8

• COMPUTE CUMULATIVE SCATTERING PROBABILITY
CURVES FOR EACH ELECTRON VELOCITY

DO 5 Q=2,TOTAL+I
V=VI (0)

.% *

* COMPUTE ALPHA AND BETA

LA=l/SQRT (i- ((V/C) **2.))
BI=I- (I/(LA**2.) )

BETA=SQRT (Bl)

* DETERMINE THE LIMITS OF THE SCATTERED ENERGY
*

BB=((l/LA)+(2.*ALPHI) )**2.
AA=l+ (BETA*BETA) + (2. *LA*ALPHI)
CC=BB- ((BETA*ALPHI) **2.)
DD=CC/(LA*LA)
EE=AA**2.
FF=DD/EE
GG=SQRT (l-FF)
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ALPHMA=ALPHI* (AA/CC) * (+GG)
ALPHMI=ALPHI* (AA/CC) * (-GG)

* COMPUTE THE PROBABILITY FOR EACH SCATTERING BIN

DO 1 L=1,257

IF (AL(L).LT.ALPHMI.OR.AL(L).GT.ALPHMA) THEN
TOT (LQ) =0
ELSE
ALPHS=AL(L)
LAPR=ALPHI -AL (L) +LA
CALL CHEMPO(NE,PI,VOL,M,H,K,C,LAPR,N,T)
CALL PHOTDI(F,BETA,K,T,M,C,H,ALPHIALPHS,NE)
TOT (L,Q) =F
TOT (L,Q) =TOT (L,Q) +TOT (L,Q-1)

IF(FLAG(L)) THEN
NOD (L) =NOD (L)
FLAG(L) =.FALSE.

ELSE
NOD (L) =NOD (L) +1

END IF

ENDIF
PROB (L) =TOT (L, Q)I/NOD (L)
CONTINUE

5 CONTINUE

* WRITE OUTPUT TO THE FILE "OP"

L=L-1
OPEN (3,FILE='OP')
REWIND 3
WRITE (3,FM7T=1O1)
DO 10 I=1,L

IF (I.NE.1) THEN
IF (PROB(I).LT.PROB(I-1)) THEN
PROB(I)=PROB(I-1)

ENDI F
END IF

WRITE(3,FMT=100)AL(I)*511. ,PROB(I)
10 CONTINUE
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100 FORMAT(F7.4,5X,F7.4)
101 FORMAT(50X)

CLOSE (3)

A END

SUBROUTINE PHOTDI(F,BETA,K,T,M,C,H,ALPHI,ALPHS,NE)
REAL BETA,LAM,M,C,KT,ASQR,BESQR,ZSQR
REAL ALPHI ,ALPHSJFNE
REAL H01,H02,H03,GO1,G02,G03,G04,G05,G06
REAL G11,G12,G13,G14,G15,G16,RMIN2,RMIN3
REAL ZESQR,AZ,ZETA,RMIN1,RMIN,HOGO,Gl,F,SRT
LAM=1/SQRT (1- (BETA**2.))
SRT=2.**. 5

* COMPUTE Z,ZETA,A

Z=(1/ (LAM*LAM*BETA) )*((ALPHS/ALPHI) -1)
ZETA-((ALPHS/ (LAM*BETA) )-BETA)
A =ALPHS/LAM

Q ~ COMPUTE RMIN

ASQR=A**2.
BESQR=BETA**2.
ZSQR=Z**2.
ZESQR=ZETA**2.
IF (ASQR+ZESQR.EQ.BESQR) THEN
RMIN-ZSQR/ (2.* (1-BESQR- (ZETA*Z)))
ELSE
RMIN1=1-BESQR- (ZETA*Z)
RMIN2=-BESQR+AZQR+ZESQR
RMIN3=BESQR-1+ (Z*ZETA)
RMIN= (RMIN1-SQRT ( ((RMIN3) **2.) -(ZSQR*RMIN2) )) /RMIN2
ENDI F

* COMPUTE GO,G1,HO

H01=(3.*RMIN) /8.
H02=(3.*RMIN*RMIN)/16.
H03=(RMIN**3.) /16.
HO =HO1-H02+H03

GOI=(11. /20.)
G02 -SQRT (RHIN)
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G03=3. /(4.*SRT)
G04=RMIN/ (4.*SRT)

* G05=(3.*RMIN*RMIN) /(40.*SRT)
G06=G02* (GO 3-G04+G05)
GO=GO1-G06

G11=(23. /70.)
G12=RMIN**1.5

G14=(3.*RMIN) /(20.*SRT)
G15=(3.*RMIN*RMIN) /(56.*SRT)
G16=G12* (G13-G14+G15)

GlG*-l

* COMPUTE F(ALPHA,ALPHAS,BETA)

IF (Z.LT.O) THEN
F=(.5-HO+(Z*GO)+(ZETA*G1) )*(1...NE)

ELSE
F= (.5+HO+ (Z*GO) +(ZETA*G1) )* (1-NE)

ENDIF

END

SUBROUTINE CHEMPO(NE,PI,VOL,M,H,K,C,LAPR,N,T)
REAL T,M,H,N,C,VOL,MU,EF,PI,KT
REAL VOLS,NE,K,LAPR

* COMPUTE FERMI ENERGY

KT=K*T
EF=(H/ (M*LAPR) ) *(H/8. ) *(((3. *N) /(PI*VOL) )** (2. /3.))

* DETERMINE THE CHEMICAL POTENTIAL

IF (((T/(EF/K))**2).GT.(12/(PI**2.))) THEN
MU=-KT*LOG ((2. *VOL/N) *( ((2*PI*M*LAPR*T/H) *(K/H) )**1. 5))

ELSE
MU=EF* (1- (((KT/EF) **2.) * ((PI**2.) /12.)))

ENDIF

* COMPUTE THE PROBABILITY OF THE FINAL ENERGY STATE
* BEING OCCUPIED
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* ~VOLS= ((M*C*C* (LAPR-1) )-MU) /KT
IF (VOLS.GT.87) THEN
NE=O

ELSE
NE=1/ (EXP (VOLS) +l.)

ENDI F

END
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Variable Listing

A = An independent variable

AA = A parameter used to compute the minimum and maxi-
mum scattered energy

AL = An array identifying the scattered energy bins

ALPHI = The incident photon energy

ALPHMA = The maximum energy a photon can scatter to when
interacting with an electron of a particular speed

ALPHMI = The minimum energy a photon can scatter to when
interacting with an electron of a particular speed

ALPHS = The scattered photon energy

ASQR = The variable 'A' squared

BB = A parameter used to compute the minimum and maxi-
mum scattered energy

BESQR = The variable 'BETA' squared

BETA = The speed of an electron divided by the speed of
light

C = The speed of light

CC = A parameter used to compute the minimum and
maximum scattered energy

DD = A parameter used to compute the minimum and
maximum scattered energy

EE = A parameter used to compute the minimum and
maximum scattered energy

EF = The fermi energy

F = The cumulative scattering probability equation

FF = A parameter used to compute the minimum and
maximum scattered energy
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FLAG A logical flag that determines whether the
scattered energy of the photon lies within the
actual range of possible scattering energies

G01-G16 Terms in the cumulative scattering probability
equation

GG = A parameter used to compute the minimum and
maximum scattered energy

H01-H03 = Terms in the cumulative scattering probability
equation

H = Planck's constant

K = Boltzmann's constant

KT = The thermal energy of the electrons

L = A counter used to initialize the scattered energy
bins

LA = One over the square root one minus beta squared

LAM = The same as variable 'LA'

fO LAPR = The same as 'LA' except that the electron speed
in beta is that associated with the final energy
of the scattered electron

M = The mass of an electron

MU = The chemical potential

N = The number of density of the electrons

NE = The probability of occupation of an electron
*--state

NOD = An array used to identify the number of times the
scattering probability was computed for each
scattering bin

PI = The constant 'pi'

PROB = An array that divides 'TOT' by 'NOD'

Q = A counter variable

R = A counter variable

RMIN = The variable 'Rmin'
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RMINl = A parameter used to compute 'RMIN'

RMIN2 = A parameter used to compute 'RMIN'

RMIN3 =A parameter used to compute #RMIN'

T = The equilibrium temperature of the electrons

TOTAL = The total number of velocity data points

TOT = An array that contains the scattering probability
at different scattered energy bins

VI = An array containing the velocities associated
with the electron distribution

VOL = The volume of the system of electrons and photons

VOLS = A parameter used to determine if the exponential
term in the occupation equation is too large and
prevents overflow errors.

Z = An independent variable

ZETA = An independent variable

ZESQR = The variable 'ZETA' squared

ZSQR = The variable 'Z' squared

54
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B. 'EDIST' Listing

The computer code 'EDIST' computes the velocity

distribution data needed in the program 'CSP'. This data

is then used to find the cumulative scattering probability

averaged over these velocities. A code and variable list-

ing are contained in this appendix.

."
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* -PROGRAM EDIST

* GIVEN # DENSITY AND TEMP, THIS PROGRAM DIVIDES THE DIST.
* INTO 100 EQUALLY PROBABLE SECTIONS. THE ENERGIES
* ASSOCIATED WITH THE EQUAL PROBABLE BLOCKS ARE USED TO
* COMPUTE THE SCATTERING PROBABILITY CURVES.

REAL F(10000),EKT,E,DE,B,A,CONST,EN(200)
REAL VI (200) ,CSQR,NUMU,W
INTEGER N,L
CSQR=3E8*3E8
PRINT*,'ENTER THE TEMPERATURE OF THE ELECTRONS'
READ*,EKT
PRINT*, 'ENTER THE NUMBER DENSITY OF THE SYSTEM'
READ*,NU
DE=EKT/1000.
E=DE
CALL CHEMPO(MU,NU,EKTE)
MU=MU/1. 602E-16
W= (E -MU) /EKT

IF (W.GT.87) THEN
B=0

ELSE
B=SQRT (E* (E+1022.)) * (E*511.) * (1/(EXP (W) +1))

ENDIF

F(1)=.5*DE*B
A=B
DO 1 N=2,10000
E=E+DE

CALL CHEMPO(MU,NU,EKT,E)
MU=MU/1. 602E-16
W=(E-MU) /EKT

IF (W.GT.87) THEN
B=0
ELSE
B=SQRT (E* (E+1022.) ) * (E+511.) * (1/(EXP (W) +1))

ENDIF

F (N) =F (N-i) +. 5*DE* (B+A)
A=B
CONTINUE
CONST=F (10000) +B*EKT
PRINT*, EKT, CONST

F (1) =F (1) /CONST
DO 5 N=2,10000
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F (N)=F (N)/ICONST
* 5 CONTINUE

* WRITE THE EQUALLY PROBABLE VELOCITIES TO THE
* FILE "VEL"

OPEN(3,FILE='VEL')
REWIND 3
DO 20 I=1,L-1

WRITE (3,FMT=100)VI(I)
20 CONTINUE
100 FORMAT (El1. 3)

CLOSE (3)

* WRITE THE ELECTRON PROBABILITIES TO THE
* FILE "MIKE"

OPEN (3,FILE='MIKE')
REWIND 3
DO 55 1=1,L-1
WRITE (3,FMT=1O1)F(I)

55 CONTINUE
101 FORMAT (E 11. 3)

WRITE (3 ,FMT=102) CONST
102 FORMAT (E 13. 4)

CLOSE (3

END

SUBROUTINE CHEMPO (MU,NU,EKT,E)
REAL T,M,H,NU,CVOL,MU,EF,PI,KT,LAM,K
PARAMETER(C=3.E8,M=9. 1E-31,H=6. 63E-34,VOL=1)
PARAMETER (K=1. 38E-23,PI=3. 14159)
T=EKT/8. 61E-8
LAM= (E/511. )+1

* COMPUTE FERMI ENERGY

KT=K*T
EF=(H/ (M*LAM) )*(H/8.)*( ((3.*NU) /(PI*VOL) )**(2./3.)
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* DETERMINE THE CHEMICAL POTENTIAL

IF (((T/(EF/K))**2).GT.(12/(PI**2.))) THEN
MU=..KT*LOG( (2.*VOL/NU) * (((2'PI*M*LAM*T/H) *(K/H)) **1.5))

ELSE
MU=EF*(-( ( (KT/EF) **2.)*( (PI**2.) /12.)))
END IF

END

58



Variable Listing

A =The value of the-electron distribution at a par-
ticular energy, and used as the left boundary in
the trapezoidal integration

B =Same as WA, but used as the right boundary in the
trapezoidal integration

BETA =The speed of an electron divided by the speed of
light

C =The speed of light

CQNST =The numerically determined normalization constant

CSQR =The variable 'CI squared

DE =The energy increments used to integrate the
distribution

E =The energy of an electron in the distribution

EF = The fermi energy

EN = The array which contains the hundred equally
probable energies of the electron distribution

EKT = Same as 'KTV, the thermal energy of the electrons

F = An array which contains the values of the electron
distribution at various energies

H =Planck's constant

K =Boltzmann's constant

KT =The thermal energy of the electrons

LAM =The same as variable ILA'

M =The mass of an electron

MU =The chemical potential

N = The number density of the electrons

NE = The probability of occupation of an electron state
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i: .?' PI = The constant 'pi'

T = The equilibrium temperature of the electrons

VI = The array contairing the velocities associated
with the electron distribution

VOL = The volume of the system of electrons and photons

W = A parameter used to determine if the exponential
term in the occupation equation is too large and
prevents overflow errors
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C. Derivation of the Chemical Potential

The chemical potential is derived for the cases

when is less and greater than zero. The case where

S> 9 is addressed first. The equation that defineskT

the chemical potential is the distribution of the electrons

integrated over all possible momentum. This is equal to

the number of electrons in the system.

top..

For ease of calculation, a variable change is made. Let

d, r. (c- 3,)..

the density is now,

0

where 'a' is equal to
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Next define f(e) as

and using a hint from reference (2:36), the integral can

be rewritten.

A" A

A variable change is made in the first integral. Letting

x=( -- ) and changing the limits the first integral becomes,
-(xrc r

Similarly for the third integral let x= M- and the

limits are changed such that the integral becomes,

0

thus,

V.~1 J E (-0
:- p_ ex A-TZ

In the limit where T"rT (fpcac) so that integrals one

and three can be gathered under the same limits.
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A Taylor series expansion is then performed about . The

density is now

After substituting .

CL ,_-%3

into equation C-12 and evaluating the remaining integral

the chemical potential is,

where C is the fermi energy and defined as

~£'.

Further approximations lead to

e: =+i- 7+

. I

63:.... .... .... ..... :.

.'. 6 3 5.S



where

Tf The Fermi temperature

Since the approximation made was for large , equa-

tion (C-17) is valid until p is zero.

In the nondegenerate limit 04<0), the energy eigen-

values possible for single particle are,

and the partition function for a single particle in a h,

monatomic gas is

o--"~C- 
k: .

where & and nx , ny, and n can vary from 1 to c."

The approximation that the number of energy states is a

continuum allows for the replacement of the summation

symbol by an integral so that

e~Y1A
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a

thus

where 'g' has been added to account for the spin degeneracy.

For a system of 'N' indistinguishable particles the par-

tition function (11:155) is,

Taking the natural logarithm of both sides yields

using Stirling's theorem (10:611) which states

further simplifies equation (C-24) to

V-..

Now, by definition (10:323)

-. AT
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so that the chemical potential in the nondegenerate

limit is,

[%'.
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D. Derivation of the Equation 13

Development of the Compton scattering formula with

an angular dependence in the laboratory reference frame is

important for determining the limits for the scattered

photon distribution. The approach requires that transforma-

tions and rotations be made to simplify the final expression.

Starting in the lab frame, the velocity of the

electron is chosen to be in the direction of the z-axis and

making an angle of(e with the incident photon.

X
The photon 4 vector is,

-,°-

where X is an arbitrary angle chosen for convenience.

The electron 4 vector is

6.

67 "

i"''...'''...'' "''..'... ..'-?,''.''..;'','''...' ... .", .' .* . *.. . * ... ."..-".. ."."..v ... ."-".. ..•"."."-'-'...-"...



Next, the symmetrized and normalized lorentz transformation

matrix

o .o 0.

is used to transform both electron and photon vectors to

the electron rest frame. Under the transformation these

vectors become,

• ~gvco- 'T / J -

Next, the coordinate system is rotated to remove the x'

and 'y' components in the photon 4 vector. For ease of

computation, values of 1 and 0 were chosen for cos X and

sin X respectively. Thus,

00 J
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A rotation about the 'y' axis is done using the rotation

matrix

N

" c~5 0 - ,c =

- =-

and the rotated photon 4 vector becomes

r-05

C. The angle d is picked so that the 'x' component is zero.

This requires that

b..

and from this sin 6 and cos 6 are

Sir%
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so the photon 4 vector is now,

Using the above results, Compton scattering in the electron

rest frame becomes,

INA4

The scattered photon 4 vector is

~~~co'"[[

C.-

L

where 0 and T are the polar and azimuthal angles in the

electron rest frame. Next, a reverse rotation transforma-

tion is done to get,
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or

-tco5, 6%^

Finally, the inverse of the initial lorentz transform is

used to transform to the lab frame. The momentum is

C.

Substituting the equation D-13 into D-17 and dividing both

sides by mc yields,

Where the change in the origin of T changes cos r to sin T.

This is equation 13. This work was done largely by

-* Dr. Nickel (7) and was presented to give a deeper apprecia-

'4.

" Fionlly the inrerse of euteionita 13.t tasom s"
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E. Derivation of the Relativistic

Fermi Distribution

When the temperature of a system becomes large

enough the distribution of electrons can no longer be

described by equation 3. An expression for relativistic

fermi distributions is derived to characterize this region.

First, begin with the distribution of electrons when the

gas is nonrelativistic.

~ ~ TrV ___ __

4--.

Next, replace momentum and energy with the relativistic

equivalents

::: ~~~~P= ,,,,,o,,,0 V -'Mac"

The distribution function in terms of velocity is

But, % is a function of velocity so using the substitu-

tions
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Cj-,
t -

.0

the distribution of electrons becomes,

Integrating (E-7) from one to infinity yields the total

number of electrons in the system.
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